Semi-Automatic Image Annotation

نویسندگان

  • Wenyin Liu
  • Susan T. Dumais
  • Yanfeng Sun
  • HongJiang Zhang
  • Mary Czerwinski
  • Brent A. Field
چکیده

A novel approach to semi-automatically and progressively annotating images with keywords is presented. The progressive annotation process is embedded in the course of integrated keyword-based and content-based image retrieval and user feedback. When the user submits a keyword query and then provides relevance feedback, the search keywords are automatically added to the images that receive positive feedback and can then facilitate keyword-based image retrieval in the future. The coverage and quality of image annotation in such a database system is improved progressively as the cycle of search and feedback increases. The strategy of semi-automatic image annotation is better than manual annotation in terms of efficiency and better than automatic annotation in terms of accuracy. A performance study is presented which shows that high annotation coverage can be achieved with this approach, and a preliminary user study is described showing that users view annotations as important and will likely use them in image retrieval. The user study also suggested user interface enhancements needed to support relevance feedback. We believe that similar approaches could also be applied to annotating and managing other forms of multimedia objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Automatic Image Annotation Using Modified Multi-label Dictionary Learning

Automatic image annotation has attracted lots of research interest, and effective method for image annotation. Find effectively the correlation among labels and images is a critical task for multi-label learning. Most of the existing multi-label learning methods exploit the label correlation only in the output label space, leaving the connection between label and features of images untouched. I...

متن کامل

An image retrieval and semi-automatic annotation scheme for large image databases on the Web

Image annotation is used in traditional image database systems. However, without the help of human beings, it is very difficult to extract the semantic content of an image automatically. On the other hand, it is a tedious work to annotate images in large databases one by one manually. In this paper, we present a web based semi-automatic annotation and image retrieval scheme, which integrates im...

متن کامل

Title of Dissertation : IMAGE MANAGEMENT USING PATTERN RECOGNITION SYSTEMS

Title of Dissertation: IMAGE MANAGEMENT USING PATTERN RECOGNITION SYSTEMS Bongwon Suh, Doctor of Philosophy, 2005 Dissertation Directed By: Associate Professor Benjamin B. Bederson, Department of Computer Science With the popular usage of personal image devices and the continued increase of computing power, casual users need to handle a large number of images on computers. Image management is c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001